Unstable Particle in Quantum Mechanics

Matt Kafker

Exercise:

We consider a simple quantum mechanical model of an unstable particle which decays with some lifetime τ.

Solution:

Suppose $P(t)=\int_{-\infty}^{\infty}|\Psi|^{2} d x$. And suppose Ψ is a solution of the Schrödinger equation with potential $V=V_{0}-i \Gamma$, where $\Gamma \in \mathbb{R}_{>0}$. Then,

$$
\begin{gathered}
\frac{d P(t)}{d t}=\frac{d}{d t} \int_{-\infty}^{\infty}|\Psi|^{2} d x=\int_{-\infty}^{\infty}\left(\dot{\Psi}^{*} \Psi+\Psi^{*} \dot{\Psi}\right) d x= \\
\frac{i}{\hbar} \int_{-\infty}^{\infty}\left[\left(-\frac{\hbar^{2}}{2 m} \Psi_{x x}^{*} \Psi+\left(V_{0}-i \Gamma\right)|\Psi|^{2}\right)-\left(-\frac{\hbar^{2}}{2 m} \Psi^{*} \Psi_{x x}+\left(V_{0}+i \Gamma\right)|\Psi|^{2}\right)\right] d x= \\
-\frac{2 \Gamma}{\hbar} P(t)+\frac{i}{\hbar} \int_{-\infty}^{\infty}-\frac{\hbar^{2}}{2 m}\left(\Psi_{x x}^{*} \Psi-\Psi^{*} \Psi_{x x}\right) d x=-\frac{2 \Gamma}{\hbar} P(t) \Longrightarrow \\
\frac{d P(t)}{d t}=-\frac{2 \Gamma}{\hbar} P(t)
\end{gathered}
$$

Solving this equation, we get

$$
P(t)=e^{-2 \Gamma t / \hbar} \equiv e^{-t / \tau}, \text { where } \tau=\hbar / 2 \Gamma .
$$

Thus, we conclude that a solution to the Schrödinger equation with a real potential and a constant imaginary offset describes an unstable particle.

