Unstable Particle in Quantum Mechanics

Matt Kafker

Exercise:

We consider a simple quantum mechanical model of an unstable particle which decays with some lifetime τ .

Solution:

Suppose $P(t) = \int_{-\infty}^{\infty} |\Psi|^2 dx$. And suppose Ψ is a solution of the Schrödinger equation with potential $V = V_0 - i\Gamma$, where $\Gamma \in \mathbb{R}_{>0}$. Then,

$$\frac{dP(t)}{dt} = \frac{d}{dt} \int_{-\infty}^{\infty} |\Psi|^2 dx = \int_{-\infty}^{\infty} \left(\dot{\Psi}^* \Psi + \Psi^* \dot{\Psi}\right) dx =$$
$$\frac{i}{\hbar} \int_{-\infty}^{\infty} \left[\left(-\frac{\hbar^2}{2m} \Psi^*_{xx} \Psi + (V_0 - i\Gamma) |\Psi|^2 \right) - \left(-\frac{\hbar^2}{2m} \Psi^* \Psi_{xx} + (V_0 + i\Gamma) |\Psi|^2 \right) \right] dx =$$
$$-\frac{2\Gamma}{\hbar} P(t) + \frac{i}{\hbar} \int_{-\infty}^{\infty} -\frac{\hbar^2}{2m} \left(\Psi^*_{xx} \Psi - \Psi^* \Psi_{xx} \right) dx = -\frac{2\Gamma}{\hbar} P(t) \implies$$
$$\frac{dP(t)}{dt} = -\frac{2\Gamma}{\hbar} P(t).$$

Solving this equation, we get

$$P(t) = e^{-2\Gamma t/\hbar} \equiv e^{-t/\tau}$$
, where $\tau = \hbar/2\Gamma$.

Thus, we conclude that a solution to the Schrödinger equation with a real potential and a constant imaginary offset describes an unstable particle.