We derive a technique for estimating the uncertainty in an maximum likelihood estimate of the parameter of a probability distribution.

(Source: MacKay – Information Theory, Inference, and Learning Algorithms.)

Uncertainty in MLE

We can estimate the uncertainty for our maximum likelihood parameter estimate as follows.

Suppose that the likelihood function is approximately Gaussian around the peak value $\hat{\gamma}$ with some unknown variance σ_{γ}^2 :

$$p(\{v_i\}_i|\gamma) \sim \exp\left(-\frac{(\gamma - \hat{\gamma})^2}{2\sigma_{\gamma}^2}\right) \implies \log\left(p(\{v_i\}_i|\gamma)\right) \sim -\frac{(\gamma - \hat{\gamma})^2}{2\sigma_{\gamma}^2}.$$

Then, we may estimate the unknown variance σ_{γ}^2 by equating

$$\frac{\partial^2 \log\left(p(\{v_i\}_i|\gamma)\right)}{\partial \gamma^2} = -\frac{1}{\sigma_\gamma^2}.$$