

1.)
$$H(P_{1},...,P_{n})$$
 is continuous
2.) When all enterous one equally probable (i.e. $P_{i}=V_{n}$ $\forall i \in \mathbb{Z}_{1},...,N_{s}$)
 $H(V_{n},...,V_{n}) \equiv A(n)$ is a nonotonically increasing function of n .
 $H(V_{n},...,V_{n}) \equiv A(n)$ is a nonotonically increasing function of n .
(I'm huitively, a uniform distribution over none outeres is more "uncertain" then

A uniform distribution over favor values.)
3.) Composition Law
Suppose we wish to group outcomes together. We might group
$$E_{X_1,...,N}$$

together with probability $W_1 = \rho_1 + ... + \rho_{N_1} E_{X_{K+1},...,X_{KMN}}$ with
probability $W_2 = \rho_{K+1} + ... + \rho_{K+N}$, and so on. We can then assign
conditional probabilities as $\rho(X_1|W_1) = P_1/W_1,..., P(X_k|U_1) = P_k/W_1$,
and so on. Specifying the group probabilities another conditional probabilities
is equivalent to specifying the only in all probabilities, so mergine the mentionity
to be the source in both cases.
 $H(\rho_{1,...,}, \rho_n) = H(W_{1,...,}, Wr) + W_1H(P_1'W_{1,...,}, P_2'W_1)$
 $+ W_2 H(P_{KY}/W_{2,...,}, P_{K+M}/W_2) + ...$
We show that the Shannon entropy satisfies these reprintender.
Proof[]
Suppose we have probabilities, as involued numbers can be constructed from

Se grences a findiant humbers, and this continuous, said will behave well under
such segmence limits. Thus, we can find numbers
$$\{n_i\}_{i=1}^N$$
, $n_i \in \mathbb{N}$ such
that $P_i = n_i / \sum_i n_i$.
We will now treat these probabilities as "groups" made from some million
distribution over $\sum_i n_i$ numbers. By rule (2), this without
distribution has unsectavidy $A(\sum_i n_i)$.
By rule (3), rehave
 $A(\sum_i n_i) = H(P_{1,\dots}, P_n) +$
 $\sum_j P_i H(\frac{1/\sum_i n_i}{n_j / \sum_i n_i}, \dots, \frac{1/\sum_i n_i}{n_j / \sum_i n_i}) \Longrightarrow$
 $A(n_j)$
 $H(P_{1,\dots}, P_n) = A(\sum_i n_i) - \sum_i P_i A(n_i)$.
To determine A_i becomsider the case when $n_i = m$ $\forall i \in [1,\dots,n]^r$.

Then,
$$\sum_{i} P_{i} = m \cdot n$$
, and
 $H\left(\frac{m}{mn} - \frac{m}{mn}\right) = A(mn) - \sum_{i} \frac{m}{mn} A(m)$
 $\iff A(n) + A(m) = A(m \cdot n)$
We thus conclude that $A(n) = K \log(n)$, where $K > 0$ by the
(2). Finally substituting into the final for $H(p_{1}, -, P_{n})$, we have
 $H(p_{1}, -, P_{n}) = K \log(\sum_{i} n_{i}) - K \sum_{i} P_{i} \log(m_{i}) =$
 $K \log(\sum_{i} n_{i}) - K \sum_{i} P_{i} \log(m_{i}) - P_{i} \log(\sum_{i} n_{i}) + P_{i} \log(\sum_{i} n_{i})$
 $= K \log(\sum_{i} n_{i}) - K \sum_{i} P_{i} \log(m_{i}) - P_{i} \log(\sum_{i} n_{i}) + P_{i} \log(\sum_{i} n_{i}) \sum_{i} P_{i} \log(m_{i}) - P_{i} \log(\sum_{i} n_{i}) + P_{i} \log(\sum_{i} n_{i}) \sum_{i} P_{i} \log(m_{i}) \sum_{i} P_{i} \log(m_{i}) \sum_{i} P_{i} \log(m_{i}) \sum_{i} P_{i} \log(m_{i}) \sum_{i} P_{i} \log(\sum_{i} n_{i}) \sum_{i} P_{i$