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Exercise:
We derive the path integral in quantum mechanics.
Solution:

Consider a particle in 1D with Hamiltonian given by

where [z, p] = i. We wish to calculate the amplitude A that the system starts at position z; at time
to and ends at position z¢ at time .
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But we cannot calculate this for arbitrary (potentially time-dependent) Hamiltonians. Instead, we
discretize time into small chunks §¢. Then the amplitude describing the particle moving in the
sequence of positions z; = 1 — -+ = x, — x is given by
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These intermediate positions z ...z, are arbitrary, so to get A we integrate over them all (equiv-
alently, we have simply inserted completeness relations)
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We focus on an individual term
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We recall that if [A, B] # 0, eAtB = eAeBe~ 314 Blgnested commutators ... Eyrthermore, we consider
0t < 1, so we can simplify this expression to
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The full amplitude then becomes

A= Nn/HdxjeiL(xn,a':n)ét—i-m—i-iL(;El,:il)tit
J

and in the limit that 6t — 0, we have
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