Exercise: We show that odd rements of symmetric probability distributions vanish.
(Source: undergraduate shall mech)
Let
$$p(x)$$
 be a 1D continuous probability density that is symmetric
under $x \mapsto -x$. Let v_1 be an odd positive integer. Then, the v_1^{nk} reveat of p
 $\begin{cases} x^n > = \int x^n p(x) dx \\ - bo \end{cases}$
has an odd integrand under $x \mapsto -x$:
 $x^n p(x) \mapsto (-x)^n p(-x) = (-1)^n x^n p(x) = -x^n p(x)$.
Thus, the integral vanishes, and we have
 $\begin{cases} x^n > = 0$.