Exercise We derive Newton's mellow for fiveling the roots of a differentiable function.

Suppose we have some differentiable function, and wish to find He point where it ravishes.

We proceed as follows. Pick a starling guess, x_{0}. Then, re update our guess to be the point where the tangent bine lo $f\left(x_{0}\right)$ interacts iteaxis, $x_{\text {. . Then, re repeal thispricedure unlit ne approach Herod. }}^{\text {. }}$ (For the present, we assume that f is sulficionlly nivethd this procedure will converge.)
We find x_{1} given x_{0}.

Fromitle diagrone above, we cause that the tangent line will intersect the axis when

$$
\begin{aligned}
& f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)=0 \Longleftrightarrow x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right) \\
& x_{1}=x_{0}
\end{aligned}
$$

We can now find X_{2} given X_{1}, and se on. Thus, Newton's method is

- Guess Ko
- Iterate $x_{n}=x_{n}-f\left(x_{n-1}\right) / f^{\prime}\left(x_{n-1}\right)$ until $\left|f\left(x_{n}\right)\right|<\varepsilon$ for sone tolerance ε.

