6.11

Did not attempt.
6.2

We consider a simple network (i.e. no multi-edges or self-lopss) of n nodes and one comperent. That is, the network is connected.

We know that the minimum number of edges if can have while reasoning simple and connected is $m_{\min }=n-1$.

The proof is given on page 123. Suck a nolwork is a tree.
The maximum number of edges will occur nhentere is aviedge between every two nodes. Astle edges ar undirected, $M_{\text {max }}$ is given by the number of ways one can choose two eloneats fromatel of n where order is irretevent, andre are sampling without replacement:

$$
m_{\max }=\binom{n}{2}=\frac{n!}{2!(n-2)!}
$$

This is a complete graph.
6.3
a.) We construct the adjacency matrix of the network

We recall that the adjacency matrix is given by

$$
A_{i j}=\left\{\begin{array}{l}
1 \text { if there is an edge from } j \text { to } i \\
0 \text { ollerwise }
\end{array}\right.
$$

Thus, we have

$$
A=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

We confirm trot this is correct in Mallematica:

In[26]:= AdjacencyMatrix[\%24] // MatrixForm
Out[26]//MatrixForm=

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

b) We find the incidence matrix of the bipartite graph

We recall that the incisure matrix B is de fined as
\qquad
$B_{i j}=\left\{\begin{array}{l}\text { if itamjeleay } \text { to } \text { gap } i \\ 0 \text { oflewie }\end{array}\right.$
Following Figure 6.46, our matrix will be 5×4 :

$$
B=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

We remark that if ne had labeled the groups and individuals the other way, he would have derived the transpose if this matrix.
c.) We derive the projection matrix of the graph

onto its black nodes (ie. outs the groups). As there are 5 groups, our projection matrix will be 5×5.

The two different projections ave $P=B^{\top} B(4 \times 4)$ and $A^{\prime}=B B^{\top}$ (5×5). Thus, the projection matrix audote black nodes isgien by

$$
P^{\prime}=B B^{\top}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 2 & 2 & 0 & 1 \\
1 & 2 & 3 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

The off-diagoral ehovents of this matrix, $P_{i j}^{\prime}$ gie Ne number of common numbers of graphs i and j. The diagonal etorents, $P_{i i}^{\prime}$, jivetle number of elements of group i.
We confirm this ressll by observing the original bipartite graph.

a.) We know that

$$
\begin{aligned}
& k_{i}=\sum_{j} A_{i j}=\vec{A}_{i} \cdot \vec{I}, \text { wher } \vec{A}_{i}=T_{\text {Wbe }}\left[A_{i j}\{j, n\}\right] \\
& \Rightarrow \vec{k}=A \vec{I}
\end{aligned}
$$

b.) We know tha) the number of edegs, m, obeys

$$
\begin{gathered}
2 m=\sum_{i} k_{i}=\vec{k} \cdot \overrightarrow{1}=(A \overrightarrow{1}) \cdot \overrightarrow{1}= \\
\overrightarrow{1}^{\top} A \overrightarrow{1} \Rightarrow m=\frac{1}{2} \overrightarrow{1}^{\top} A \overrightarrow{1}
\end{gathered}
$$

c.) We express N, where $N_{i j}$ is \# of common neighbors of ian j. A common reightoer is a note α suchtlal α and are neiftocos, and a adjure neighbors. Thus, $N_{i j}$ givestle muter of palls of leigh 2 comratigi and j.
In is hour that $\left(A^{2}\right)_{i j}$ gives the number of paths of length 2 between note i and rode. Bt since $(i \rightarrow \alpha \rightarrow j) \longleftrightarrow(j \rightarrow \alpha \rightarrow i)$) en have

$$
N=\frac{1}{2} A^{2}
$$

d.) We determine the total number of triangles in ane twerk. A triangle can be thought of as a path of length 3 from a node, i, to itself. This is given by $\left(A^{3}\right)_{\text {ii }}$. But since all paths armand

are to counlas a single triangle, and there are 6 such paths, we conclude that te total number of triangtesia given by

$$
\frac{1}{6} \operatorname{Tr} A^{3}
$$

6.5
a.) We sher tat a 3 -regular graph must have an even number
of nodes.

Lat n bethe number ofrodes.

$$
\begin{aligned}
& C=\frac{1}{n} \sum_{i=1}^{n} k_{i}=\frac{1}{n} \sum_{i=1}^{n} 3=\frac{3}{n} \sum_{i=1}^{n} 1= \\
& \frac{3}{n} \cdot n=3 . \quad c=\frac{2 m}{n} \Rightarrow 3=\frac{2 m}{n} \Rightarrow
\end{aligned}
$$

$n=2\left(\frac{m}{3}\right) \in \mathbb{N}$ since the graph is 3 -regular.
Thus, the number of nodes of a 3-regular graphis even.
b.) We show that the average degree of a tree is strictly losstlon 2.

The average degree is given by

$$
c=\frac{2 m}{n}=2 \cdot \frac{n-1}{n}=2(1-1 / n)<2
$$

since trees have always satisfy $m=n-1$.
c.) We consider paths between nodes A, B, and C. The edgeconnectivity (i.e. the number ofectge-indlyendent paths) between A and B is x, and the edpe-comnectivity of B and C is $y<x$.
We determine the edge connectivity between A and C. We propose that any edge-indepenteren path from $A \rightarrow B$ caubecombined with any edge-indepardenl path from $B \rightarrow C$ to form an edge-independent pall from $A \rightarrow C$.
Thus, the edge connectivity of A and C is x.y.
6.6

A star graph consists of $n-1$ nodes corroded to a central node.

WLOG, ne call this node 1. Then, the adjacent native is given by

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 0 & & 0 \\
1 & & 0 & \vdots \\
\vdots & 0 & \cdots & 0 & 0
\end{array}\right) \quad(n \times n)
$$

We construct the pattern.
Case 1: $n=2$.

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \Rightarrow\left|\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right|=0=\lambda^{2}-1 \Rightarrow \\
\lambda_{\max } & =1 .
\end{aligned}
$$

Cause $2: n=3$.

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \Rightarrow\left|\begin{array}{ccc}
-\lambda & 1 & 1 \\
1 & -\lambda & 0 \\
1 & 0 & -\lambda
\end{array}\right|=0 \\
& =2 \lambda-\lambda^{3}=-\lambda\left(\lambda^{2}-\alpha\right) \Rightarrow \lambda_{\max }=\sqrt{2} .
\end{aligned}
$$

Case $3: n=4$.

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \Rightarrow\left|\begin{array}{cccc}
-\lambda & 1 & 1 \\
1 & -\lambda & 0 & 0 \\
1 & 0 & \lambda & 0 \\
1 & 0 & 0 & -\lambda
\end{array}\right|=0=\lambda^{2}\left(\lambda^{2}-3\right) \\
& \Rightarrow \lambda_{\max }=\sqrt{3} .
\end{aligned}
$$

It is trivial to con firm computationally that the charatederistic option always takes the form

$$
0= \pm \lambda^{n-2}\left(\lambda^{2}-(n-1)\right) \Rightarrow \lambda_{\operatorname{rax}}=\sqrt{n-1}
$$

I cither did vol attempt or was unable losable the other exercises from this capper.
\qquad

