Evernise IWe derive He ID nearest neighter distribulion. (Swwrilikely.al
Suppese we have $N \gg 1$ points uniforinly distributed over an indenat of length L. We nant to firalte probabilighlad He closest paricite is a distance x oway from an arbitaning closen point (not closelothe bovinary).
To comptette probability thal the dorest parvice is a distance x away,
we need

- Ik prodabilily llat $N-1$ prolides are not within x
- He probabiling that one parlice is betveen x and $x+d x$

Te first termis given by $(1-2 x / L)^{N-1}$, and the secooll is given by $2 d x>L$. Cambining Hem, ve geitle probability

$$
d P=2 d x / L(1-2 x / L)^{N-1}
$$

The probability density is given by

$$
\rho(x)=\frac{d p}{d x}=\frac{2}{L}(1-2 x / L)^{\alpha-1} \approx \frac{2}{L} e^{-2 N x / L},
$$

Where ne have usedile apposxination $(1-x)^{n} z e^{-n x}$ for small x and lare n. Thus, the rearest neighter disfribulion is giventy

The addibenal fadber of N is simply amomalization constant. We can see it only deperats ontce dearity, which monks saree!
The nean nearet mighter dislowere isgiven by

We coupre our thartial padidion with a Monte Carto simumblion al derity $N / h=1000$.

1D Nearest Neighbor Distribution, 1 Million Samples

Exerrise (We dorive the neaed nightor distribition in n divensions.
We follow the sare provedive as before. The probabilily thal $N-1$ paricices are nol within a dislance r is given by

$$
\left(1-V_{n}(r) / L^{n}\right)^{N-1}
$$

and the probabiligythal are paticteris betreen r and $r+d r$ is $\operatorname{Son}(r) d r / L^{n}$, whene $V_{n}(r), S_{n}(r)$ aretle voline and surface arras of spleres in ndivesimes.

If follows that the probebility isgiventy

$$
d P_{n}=\left(1-V_{n}(r) / L^{n}\right)^{N-1} S_{n}(r) d r / L^{n},
$$

and that the PDF isgiven by

$$
\begin{aligned}
& \tilde{\rho}_{n}(r)=\frac{d P_{n}}{d r}=\left(1-V_{n}(r) / L^{n}\right)^{N-1} S_{n}(r) / L^{n} \approx \\
& \frac{S_{n}(r)}{L^{n}} e^{-N V_{n}(r) / L^{n}}, \text { vp to nomalization. }
\end{aligned}
$$

The formulas for n-splose surfacee area and volune are given by

$$
S_{n}(r)=\frac{2 \pi^{n / 2} r^{n-1}}{\Gamma(n / 2)}, V_{n}(r)=\frac{\pi^{n / 2}}{\Gamma(n / 2+1)} r^{n}
$$

So, our nearest neighber distribution is given by

$$
\tilde{S}_{n}(r)=\mathcal{N} \frac{2 \pi^{n / 2} r^{n-1}}{\Gamma(n / 2) L^{n}} \exp \left(-\frac{N \pi^{n / 2} r^{n}}{\Gamma(n / 2+1) L^{n}}\right)
$$

where \mathcal{N} isthe nomblization conslant, which canssimply be fond by integaling over P. (No Jocobien is reguired forthi's integation, sincectle anglar in inomadion is already capluredin $S_{n}(r)$.) We find that

$$
S_{n}(r)=\frac{N}{L^{n}} \frac{2 \pi^{n / 2} r^{n-1}}{\Gamma(n / 2)} \exp \left(-\frac{N}{L^{n}} \frac{\pi^{n / 2} r^{n}}{\Gamma(n / 2+1)}\right)
$$

We now seethal our resull anly depends onthe density and le spatiad divension. The rean distanee of the rearest mightor in n-divensious isgiven by

$$
\begin{aligned}
& \left\langle r_{n}\right\rangle=\int_{0}^{\infty} r \rho_{n}(r) d r=\int_{0}^{\infty} \frac{N}{L^{n}} \cdot \frac{2 \pi^{n / 2} r^{n}}{\Gamma^{r}(n / 2)} \exp \left(-\frac{N}{L^{n}} \frac{\pi^{n / 2} r^{n}}{\Gamma(n / 2+1)}\right) d r . \\
& u=\frac{N}{L^{n}} \frac{\pi^{n / 2} r^{n}}{\Gamma(n / 2+1)} \Rightarrow d u=\frac{N}{L^{n}} \frac{2 \pi^{n / 2} r^{n-1}}{\Gamma(n / 2)} \Longrightarrow \\
& \left\langle r_{n}\right\rangle=\int_{0}^{\infty} u^{1 / n} e^{-u} d u \cdot \frac{L}{N^{1 / n}} \frac{\Gamma(n+1)^{1 / n}}{\sqrt{\pi}}=\Gamma(1+1 / n)\left(\frac{L^{n}}{N} \cdot \frac{\Gamma(n / 2+1)}{\pi^{n / 2}}\right)^{1 / n}
\end{aligned}
$$

Wenau perform several Monte Canto simulabious tivest the resulls.
2D Nearest Neighbor Distribution

r

3D Nearest Neighbor Distribution

It is less likey that higher dinensions will be retevant, but veinclude a few cases oulof geveral interst.

10D Nearest Neighbor Distribution

It is perhaps wol supprising that the neam incraceses with spatial divession (N fired, $L=1$), but I have no idea why the distribulious wald becore leff-skeved in higherdivesions!
\qquad

