For the following 6 pablums, we analyze the differnial epurious spirally

- vector field
- fixed points
- stability
- $x(t)$ graphically
$\cdot x(t)$ analytically?
2.2 .11

Let $\dot{x}=4 x^{2}-16$.
Then, we have an upuad opening parabola, shifted below the horizontal axis.

We have $x^{*}= \pm 2$, since x^{*} satisfies $f\left(x^{*}\right)=0$. From our vector field, we see that $x^{*}=2$ is unstable, and $x^{*}=-2$
is stable.

Suppose $x_{0}=0$, then $x(t)$ behaves like

Suppose $x_{0}=1$, then

Lastly, we attempt to find $x(t)$ aralylically.

$$
\begin{aligned}
& \frac{d x}{d t}=4 x^{2}-16 \Rightarrow \frac{d x}{4 x^{2}-16}=d t \Rightarrow \\
& t=\int \frac{d x}{4 x^{2}-16}=-\frac{1}{8} \tanh ^{-1}\left(\frac{x}{2}\right)+c \Rightarrow \\
& -8(t-c)=\tanh ^{-1}(x / 2) \Rightarrow \\
& x(t)=2 \tanh (8(c-t))
\end{aligned}
$$

Somathing like tlat.

$$
2.2 .2
$$

Let $\dot{x}=1-x^{14}$.
Given tlat x^{14} iseven, we have

We observe that our fixed points are $x^{*}= \pm 1 ; x^{*}=-1$ is unstable, $x^{*}=1$ is stable.

Lastly, we lory to find $x(t)$ analytically: $x=1-x^{\prime 4} \Rightarrow$

$$
\int \frac{d x}{1-x^{14}}=t
$$

No easy solution.
2.2 .3
$\dot{X}=x-x^{3}$. We plot each term separately and compare their plots:

Fixed points are $x^{*}=-1,0$, 1: stable, unstable, stable.

To solve analytically, nemust have

$$
\begin{aligned}
& t=\int \frac{d x}{x-x^{3}}=\ln (x)-\frac{1}{2} \ln \left(1-x^{2}\right)+\tilde{C} \\
& =\ln \left(\frac{x}{\sqrt{1-x^{2}}}\right)+\tilde{C} \Rightarrow e^{t-\tilde{C}}=\frac{x}{\sqrt{1-x^{2}}}=C e^{t} \\
& \Rightarrow \sqrt{1-x^{2}}\left(e^{t}=x \Rightarrow x^{2}=\left(1-x^{2}\right) c^{2} e^{2 t}=D e^{2 t}-D e_{e}^{2 t}\right. \\
& \Rightarrow x^{2}\left(1+D e^{2 t}\right)=D e^{2 t} \Rightarrow x^{2}=\frac{D e^{2 t}}{1+D e^{2 t}} \\
& \Rightarrow \frac{1}{1+D e^{-2 t}} \Rightarrow x= \pm \frac{1}{\sqrt{1+D e^{-2 t}}} \\
& x(0)=x_{0}= \pm \frac{1}{\sqrt{1+D}} \Rightarrow x_{0}^{2}=\frac{1}{1+D} \\
& \Rightarrow \frac{1}{x_{0}^{2}}=1+D \Rightarrow D=\frac{1}{x_{0}^{2}}-1 \\
& \Rightarrow x(t)= \pm \frac{1}{\sqrt{1+\left(\frac{1}{x_{0}^{2}-1}\right) e^{-2 t}}} .
\end{aligned}
$$

Strogatz has

$$
\begin{aligned}
& x(t)=\frac{ \pm e^{t}}{\sqrt{\frac{1}{x_{0}^{2}}+e^{2 t}-1}}=\frac{ \pm e^{t}}{\left.\sqrt{e^{2 t}\left(\frac{1}{x_{0}^{2}}-2 t\right.}+1-e^{-2 t}\right)}= \\
& \pm \frac{q^{k}}{\varepsilon^{y} \sqrt{1+e^{-2 t}\left(\frac{1}{x_{0}^{2}}-1\right)}} \quad \text { Check. }
\end{aligned}
$$

2.2 .4

Let $\dot{x}=e^{-x} \sin x$. .

\dot{x} has fixed points $x^{*}=z \pi, z \in \mathbb{Z}$. The stable pointsar
$x^{*}=\pi+2 \pi z, \quad z \in \mathbb{Z}$. The unstable points are $x^{*}=2 \pi z, z \in I$

No analytical solution.
2.2 .8

Given Ike following phase portrait, we find an associated system

We recall that the circles here represent fired points x^{*} of the Llow, which salify $f\left(x^{*}\right)=0$.
Hence, $f(x)$ has 3 Zeros, and its sign is determined by the diradion of flow:

2.2 .9

We find a system $\dot{x}=f(x)$ that has the following qualitative 50)ulions

We have 3 fixed points. $x^{*}=0$ is stable. $x^{*}=1$ is unstable. We only know part of $x^{*}=-1$ behavior.

Given the apparent acceleration from the center solution, we infer nommonotowcily between 0 and I. Hence, we propose $f(x)$ which satisfies

2.2.10

For He following criteria, we find asystem $\dot{x}=f(x)$, orelse we explain why such system cannot exist. We assume $f(x)$ is smooth.
a.) Every real number is a fixed point. Thetis, $\forall x f(x)=0$. Thus, we have

$$
\dot{x}=0
$$

b.) The only fixed points are the integers. Thetis,

$$
\forall x \in \mathbb{Z} f(x)=0 ; \forall y \notin \mathbb{Z} \quad f(y) \neq 0 \text {. }
$$

We propose the following function

$$
f(x)=\sin (\pi x)
$$

We observe that $\forall z \in \mathbb{Z} \quad f(z)=\sin (\pi z)=0$

$$
\forall \omega f \mathbb{Z} \quad f(\omega)=\sin (\pi \omega) \neq 0
$$

c.) There are precisely 3 fixed points and all of them ave stable.

This is impossible. We demonstrate this with a phase porinail. Suppose our 3 fixed points are a, b, c sonlistying $a<b<c$.
Our phase portrait is thus

W. thou 2 additional fixed points, this condition is vol pasithe.
d.) There are no fixed pints. Thalis, $\forall x \in \mathbb{R} f(x) \neq 0$. This is easily satisfied by

$$
f(x)=\text { const. }>0
$$

(among many other choices.)
e.) There are precisely 100 fixed points. Let $\left\{x_{k}^{*}\right\}_{k=1}^{100}$ be 100 distinct real numbers. Then the following function has precisely
100 fixed points:

$$
f(x)=\prod_{k=1}^{100}\left(x-x_{k}^{*}\right)
$$

2.2 .11

We obtain the analytical solution for the change $Q(t)$ on a capacitor in an RC circuit.
We recall Nat capacitors satisfy

$$
Q=C V
$$

We next draw the circuit:

$$
R
$$

We kroultht the voltage depp around thiscricut is O . Hence, 埌 have

$$
V_{0}-I R-\frac{Q(t)}{c}=0
$$

Since $I=\dot{Q}$, we have

$$
\begin{aligned}
& V-\dot{Q} R-Q / C=0 \Rightarrow \\
& \dot{Q}=\frac{V_{0}}{R}-\frac{Q}{R C} .
\end{aligned}
$$

We a ko asset the a switchis closed alt $=0$, and herne

$$
Q(0)=0
$$

This equation is separable. Let $V_{0} / R \equiv \alpha, \frac{-1}{R c}=\beta$.

Then,

$$
\frac{d Q}{d t}=\alpha+\beta Q \Rightarrow \int \frac{d Q}{\alpha+\beta Q}=\int d t=t
$$

Let $\begin{aligned} & u=\alpha+\beta Q \\ & d u=\beta d Q\end{aligned} \Rightarrow t=\int \frac{d u / \beta}{u}=\frac{1}{\beta} \ln u+C \Rightarrow$

$$
\begin{aligned}
& u=e^{\beta(t-c)}=A e^{\beta t}=\alpha+\beta Q \Longrightarrow \\
& Q(t)=\frac{1}{\beta}\left[A e^{\beta t}-\alpha\right]=-R C A e^{-t / R L}+\frac{V_{0}}{R} R C
\end{aligned}
$$

$=V_{0} C-R C A e^{-t / R L}$. To solve for A, we impose oui initial condition

$$
\begin{aligned}
& Q(0)=0 \Rightarrow V_{0} C-R C A \Rightarrow V_{0} C=R C A \Rightarrow \\
& A=\frac{V_{0}}{R} \Rightarrow Q(t)=V_{0} C\left(1-e^{-t / R C}\right)
\end{aligned}
$$

2.2 .12

We now consider an $R C$ circuit with a nonlinear resistor. Thensistor allows current flow $I_{R}=g(V)$ for sone function g with shape

Giventlat the willage drop aranalte cirviitis 0 , ne have

$$
V_{0}-V_{R}-Q / C=0 .
$$

We abserve that g is invertible, and lene $V_{R}=g^{-1}(I)$

$$
\begin{aligned}
& \Rightarrow V_{0}-g^{-1}(\dot{Q})-Q / C=0 \Rightarrow \\
& g^{-1}(\dot{Q})=V_{0}-Q / C \Rightarrow \dot{Q}=g\left(V_{0}-Q / C\right)
\end{aligned}
$$

Given Hat wehre foud te circut equalion, we fillits Cixed pads.

$$
g(x)=0 \Longleftrightarrow x=0
$$

Hence, H_{c} only fired pionel ocarswlen $V_{0}-Q^{*} / C=0$ $\Longleftrightarrow Q^{*}=V_{0} C$ justlike ma shavelard $R C$ cirnul. movers, $K<Q^{*} C \Rightarrow g<0, V_{0}>Q^{*} / c \Rightarrow g>0$

Thus, our phese portial is

Hence, we conclude Hat $Q^{*}=V_{0} C$ is a slable, global fixed point, justlike inthe ase of the licearresistor.
Hence, guallalindy, thenoulinear resistor dosesnt dange anjling abaid
the cireut.
2.2 .13

We consider the differential epration for a falling bedy under
drag:

$$
m \dot{v}=m g-k v^{2}
$$

a.) We find the andifical solulion tolhis system, with the IC

$$
\begin{aligned}
& v(0)=0 \\
& \frac{d v}{d t}=g-\frac{K}{m} v^{2} \equiv g-h v^{2} \Rightarrow \\
& t=\int \frac{d v}{g-h v^{2}}=\frac{1}{\sqrt{g h}} \tanh ^{-1}\left(\sqrt{\frac{h}{g}} v\right)=\sqrt{\frac{m}{g K} \tanh ^{-1}\left(\sqrt{\frac{R}{m}} v\right)}
\end{aligned}
$$

$\Rightarrow V(t)=\sqrt{\frac{m g}{K}} \tanh \left(\sqrt{\frac{g k}{m}} t\right)$, which already satisfies
$V(0)=0$ (hence Reintegration constant thalwe omitted was 0).

Given Hat $\lim _{x \rightarrow \infty} \tanh x=1, \lim _{t \rightarrow \infty} \sqrt{\frac{m g}{k}} \operatorname{aanh}\left(\sqrt{\frac{k k}{m}} t\right)=$

$$
\sqrt{\frac{m g}{k}}=V_{\text {terminal }}
$$

c.) We now anally ze this save system graphically:

$$
\dot{v}=g-\frac{k}{m} v^{2}
$$

We have fixed points when

$$
g=\frac{k}{m} v^{*^{2}} \Rightarrow v^{*}= \pm \sqrt{\frac{m g}{k}}
$$

Hence, graphically, ne have

Clearly, our solution is ronphysical for $V<-\sqrt{\frac{m s}{R}}$. But he gella stable fixed poinlathe body's (damuede) terminal) relocity and our resulls agreewith our andlylial solblion.

