Suppose $\dot{x}=\sin x$
2.1 .1

We find all fixed points of this flow. A fixed point of a flow is a point satisfying

$$
\dot{x}=0
$$

Here, we have $\dot{x}=\sin x=0 \Rightarrow x= \pm n \pi, n \in \mathbb{N}$.
Thetis, the fixed points of this flow occur at all multiples of π on the real line.
2.1 .2

At which points x does the flow have the greatest velocity to He right?
We wish to maximize $\dot{x}(x)$. Equivalently, we wish to lind points such that

$$
\begin{aligned}
& \frac{d \dot{x}}{d x}=0, \frac{d^{2} \dot{x}}{\partial x^{2}}<0 \\
& \frac{d \dot{x}}{d x}=\frac{d}{d x} \sin x=\cos x=0 \Rightarrow x= \pm \frac{(2 n+1) \pi}{2}, n \in \mathbb{N} .
\end{aligned}
$$

$$
\frac{d^{2} \dot{x}}{d x^{2}}=\frac{d}{d x} \cos x=-\sin x .
$$

Thus, we require $-\sin \left(\pm \frac{(2 n+1) \pi}{2}\right)<0 \Rightarrow$

$$
x=\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \ldots, \frac{-3 \pi}{2}, \frac{-7 \pi}{2}, \cdots
$$

That is, $x=\frac{\pi}{2} \pm 2 n \pi, n \in \mathbb{N}$.
Indeed, we could have skipped this analysis entirely and simply looked at the plot of the flow

Clearly the flow moves to the sight when $\dot{x}>0$, and does so most prickly at le max of \dot{x}. For sin (x), this occurs at $\pi / 2$ and all $2 \pi n$ translations of $\pi / 2$.
2.1 .31

We now find the flow's acceleration $\ddot{x}(x)$.
Given $\dot{x}=f(x), \quad \ddot{x}=\frac{d}{d t} \dot{x}=\frac{d}{d t} f(x)=$

$$
\frac{d}{d t} f(x(t))=\frac{d f}{d x} \frac{d x}{d t}
$$

So incur case,

$$
\ddot{x}=\frac{d}{d x} \sin x \cdot \dot{x}=\cos x \dot{x}=\cos x \sin x=\ddot{x}
$$

b.) When e does the flow have maximum positive accelenion?

This occurs where

$$
\begin{aligned}
& \frac{d \ddot{x}}{d x}=0, \frac{d^{2} \ddot{x}}{d x^{2}}<0 \\
& \frac{d \dot{x}}{d x}=\frac{d}{d x} \sin x \cos x=\cos ^{2} x-\sin ^{2} x=0 \\
& \Longleftrightarrow \cos ^{2} x=\sin ^{2} x \Rightarrow \cos x= \pm \sin x \\
& \Rightarrow x= \pm \frac{(2 n+1) \pi}{4}, n \in N
\end{aligned}
$$

Next, we evaluate the concavity of the acceleration

$$
\begin{aligned}
& \frac{d^{2} \ddot{x}}{d x^{2}}=\frac{d}{d x}\left(\cos ^{2} x-\sin ^{2} x\right)=-2 \cos x \sin x-2 \sin x \cos x \\
& =-4 \sin x \cos x<0 \Rightarrow-4 \sin \left(\frac{ \pm(2 n+1) \pi}{4}\right) \cos \left(\frac{ \pm\left(\frac{2 n+1)}{4}\right)}{}\right.
\end{aligned}
$$

<0, which means $\sin \left(\frac{+(2 n+1) \pi}{4}\right) \cos \left(\frac{ \pm(2 n+1) \pi}{4}\right)>0$.
This happens when both functions have the same argument. That is, the points of maximum positive accecention ave

$$
x=\frac{\pi}{4}+z \pi, z \in \mathbb{Z}
$$

2.1 .4

We can in fac solve $\dot{x}=\sin x$ exactly. We get

$$
t=\ln \left|\frac{\csc x_{0}+\cot x_{0}}{\csc x+\cot x}\right|
$$

a.) We solve for $x(t)$ given $x_{0}=\pi / 4$, and solve for its limiting behavior.
We have

$$
t=\ln \left|\frac{\csc (\pi / 4)+\cot (\pi / 4)}{\csc (x)+\cot (x)}\right|=\ln \left|\frac{1+\sqrt{2}}{\csc (x)+\cot (x)}\right| .
$$

Using the trig identity $\frac{1}{\csc (x)+\cot (x)}=\frac{\sin x}{1+\cos x}$, we have $t=\ln \left|(1+\sqrt{2}) \cdot \frac{\sin x}{1+\cos x}\right|=\ln (1+\sqrt{2})+\ln \left|\frac{\sin x}{1+\cos x}\right| \Rightarrow$ $t-\ln (1+\sqrt{2})=\ln \left|\frac{\sin x}{1+\cos x}\right| \Rightarrow e^{t-\ln (+\sqrt{2})}=\left|\frac{\sin x}{1+\cos x}\right|$ $=\left|\tan \left(\frac{x}{2}\right)\right|$ by another trig identity. So, we have

$$
\frac{e^{t}}{1+\sqrt{2}}=|\tan (x / 2)|
$$

To agree with Strogatz, we ignore the absolute valve, and derive

$$
x(t)=2 \tan ^{-1}\left(\frac{e^{t}}{1+\sqrt{2}}\right)
$$

In the limit, $\lim _{t \rightarrow \infty} x(t)=2 \cdot \tan ^{-1}(\infty)=\pi$.
b.) We now perform this analysis for arbitrary X_{0}. We start with

$$
\begin{aligned}
& t=\ln \binom{\csc x_{0}+\cot x_{0}}{\csc (x)+\cot (x)}=\ln \left(\csc x_{0}+\cot x_{0}\right)+\ln \left(\tan \left(\frac{x}{2}\right)\right) \\
& \Rightarrow 2 \tan ^{-1}\left(\frac{e}{\csc x_{0}+\cot x_{0}}\right)=x(t)
\end{aligned}
$$

Is our general solution.
2.1 .5

We find a mechanical system approximately governed by $\dot{x}=\sin x$.
a.) We knout pendelumina gravilitional field isgrerend by

$$
\ddot{x}=-\alpha \sin x
$$

where x istle angle from the vertical.
b.) $x^{*}=0$ is astable fixed pint because, if perturbed, ilwill settle back to $x=0$. But $x^{*}=\pi$ is unstable hearse, x^{*} perkrbed, ilwill come torestat $x=0$.

