Exercise: We derivethe LU decomposition.
(Source: Princeton Companion to Matkenalics, Numerical Analysis)

Suppose ne wish lo solvette matrix equation

$$
A x=b
$$

where A is $n \times n$. We can accomplish this with caussian elimination, where we transform A into an upper-trianglar matrix Utraigh a sequence of row operations (i.e. Scalar miltipation of overeat, and adding to to arthur new).
Adding γ. (row j) to now i cants accouplisted by left multiplication with $\boldsymbol{1}+\gamma \delta_{i j}$
For example

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
b & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a & b & c \\
d & e & e \\
g & h & i
\end{array}\right)=\left(\begin{array}{lll}
a & b & c \\
d & e & c \\
j+s a & h+s b & i+s c
\end{array}\right)
$$

$1+\delta \cdot \delta_{31}$ added $\delta \cdot($ row 1$)$ to row 3.
Each such row operation can be represented by a lover triangles matrix M_{j}. Thus, ne hare

$$
\begin{gathered}
M_{k} \cdot \cdots \cdot M, A=U \equiv M A \Longrightarrow \\
A=M^{-1} U \equiv L U
\end{gathered}
$$

As the inverse of a laver triagriar natrixis also lover-trianglor, we have expressed A as a pralud of a lover triangular natrixand an upper triangular matrix.

