Hard Sphere Collision Time

Matt Kafker

Exercise:

We predict the time of collision between two hard spheres with initial configurations $\left(x_{1}, v_{1}\right)$ and $\left(x_{2}, v_{2}\right)$ respectively.

Solution:

We consider two hard spheres of radius R. We wish to find the time t such that $\left|x_{1}(t)-x_{2}(t)\right|=2 R$. Expanding this out, we have

$$
\begin{gathered}
\left|x_{1}(t)-x_{2}(t)\right|=2 R \Longrightarrow 4 R^{2}=\left(x_{1}(t)-x_{2}(t)\right) \cdot\left(x_{1}(t)-x_{2}(t)\right)= \\
\left(\left(x_{1}-x_{2}\right)+\left(v_{1}-v_{2}\right) t\right) \cdot\left(\left(x_{1}-x_{2}\right)+\left(v_{1}-v_{2}\right) t\right)= \\
x_{12}^{2}+2 x_{12} \cdot v_{12} t+v_{12}^{2} t^{2}
\end{gathered}
$$

where we have introduced simplifying notation. We further define $b \equiv x_{12} \cdot v_{12}$, and we arrive at the quadratic equation

$$
\begin{aligned}
& v_{12}^{2} t^{2}+2 b t+x_{12}^{2}-4 R^{2}=0 \Longrightarrow \\
& t=\frac{-b \pm \sqrt{b^{2}-v_{12}^{2}\left(x_{12}^{2}-4 R^{2}\right)}}{v_{12}^{2}}
\end{aligned}
$$

We are interested in the soonest collision, so we take the negative root, and we derive

$$
t_{\mathrm{coll}}=\frac{-b-\sqrt{b^{2}-v_{12}^{2}\left(x_{12}^{2}-4 R^{2}\right)}}{v_{12}^{2}}
$$

We note that if $b<0$ or the discriminant is negative, no collision will occur.

