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Matt Kafker

Chapter 1

Problem 1.1

We consider the distribution of ages

• N(14) = 1

• N(15) = 1

• N(16) = 3

• N(22) = 2

• N(24) = 2

• N(25) = 5

where N(j) is the number of people with age j.

a.) We compute ⟨j2⟩ and ⟨j⟩2.

⟨j2⟩ =
∑
j

j2P (j) =
∑
j

j2
N(j)

N
=

1

14
(1 · 142 + 1 · 152 + 3 · 162 + 2 · 222 + 2 · 242 + 5 · 252) ≈ 459.571.

⟨j⟩ =
∑
j

jP (j) =
∑
j

j
N(j)

N
=

1

14
(1 · 14 + 1 · 15 + 3 · 16 + 2 · 22 + 2 · 24 + 5 · 25) = 21 =⇒

⟨j⟩2 = 441.

b.) We compute the standard deviation of this distribution using σ2 = ⟨∆j2⟩, where ∆j =
j − ⟨j⟩.

• j = 14 → ∆j = −7
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• j = 15 → ∆j = −6

• j = 16 → ∆j = −5

• j = 22 → ∆j = 1

• j = 24 → ∆j = 3

• j = 25 → ∆j = 4

Thus, we have

σ2 = ⟨∆j2⟩ =
∑
j

∆j2P (j) =
∑
j

∆j2
N(j)

N
=

1

14
(1 · 49 + 1 · 36 + 3 · 25 + 2 · 1 + 2 · 9 + 5 · 16) ≈ 18.5714 =⇒

σ ≈ 4.31.

c.) We compare our results with the formula

σ =
√
⟨j2⟩ − ⟨j⟩2 =

√
459.571− 441 ≈

√
18.571 ≈ 4.31.

We have thus shown that the two formulas give equivalent results for this distribution.

Problem 1.2

We consider the probability distribution ρ(x) = 1
2
√
hx

, 0 ≤ x ≤ h.

a.) We find the standard deviation of this distribution using σ2 = ⟨x2⟩ − ⟨x⟩2.

⟨x⟩ =
∫

xρ(x)dx =
1

2
√
h

∫ h

0

√
xdx =

h

3
.

⟨x2⟩ =
∫

x2ρ(x)dx =
1

2
√
h

∫ h

0

x3/2dx =
h2

5
.

It follows that

σ2 =
h2

5
− h2

9
=

4h2

45
=⇒

σ =
2h

3
√
5
.

2



b.) We compute the probability that a photograph chosen at random shows a distance more than
one standard deviation away from the average distance.

P (distance > 1 standard deviation from mean) = 1− P (distance < 1 standard deviation from mean) =

1−
∫ ⟨x⟩+σ

⟨x⟩−σ

ρ(x)dx = 1−
√

2

15

(
5−

√
5
)
≈ 0.39.

Problem 1.3

To solve this problem, we will need the following integrals:

∫ ∞

−∞
e−x2

dx ,

∫ ∞

−∞
xe−x2

dx ,

∫ ∞

−∞
x2e−x2

dx.

We derive the solution to each of them.

(∫ ∞

−∞
e−x2

dx
)2

=
(∫ ∞

−∞
e−x2

dx
)(∫ ∞

−∞
e−y2

dy
)
=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy =∫ 2π

0

∫ ∞

0

e−r2rdrdθ = 2π · 1
2

∫ ∞

0

e−r2(2r)dr = π

∫ ∞

0

e−udu = π =⇒∫ ∞

−∞
e−x2

dx =
√
π.

∫ ∞

−∞
xe−x2

dx = 0

since xe−x2

is an odd function.

∫ ∞

∞
x2e−x2

dx =

∫ ∞

∞

(
− ∂

∂α
e−αx2

dx
)
|α=1 = − ∂

∂α

∫ ∞

∞
e−αx2

dx|α=1 =

− ∂

∂α

1√
α

∫ ∞

∞
e−(

√
αx)2d(

√
αx)|α=1 = − ∂

∂α

√
π

α
|α=1 =

(−
√
π)(−1

2
α−3/2)|α=1 =

√
π

2
.

We are now ready to address the question.

a.) We consider the gaussian distribution ρ(x) = Ae−λ(x−a)2 , where A, λ, a > 0. We solve for A
using the requirement that ρ(x) be normalized.
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∫ ∞

−∞
Ae−λ(x−a)2dx = 1 = A

∫ ∞

−∞
e−(

√
λ(x−a))2 1√

λ
d(
√
λ(x− a)) =

A√
λ

∫ ∞

−∞
e−u2

du = A

√
π

λ
=⇒ A =

√
λ

π
.

b.) Next, we compute ⟨x⟩, ⟨x2⟩, and σ.

⟨x⟩ =
∫ ∞

−∞
xρ(x)dx =

∫ ∞

−∞
x

√
λ

π
e−λ(x−a)2dx =

√
λ

π

∫ ∞

−∞

1√
λ

(√
λ(x− a) +

√
λa

)
e−λ(x−a)2dx =

a
(∫ ∞

−∞

√
λ

π
e−λ(x−a)2dx

)
+

√
λ

π

∫ ∞

−∞

√
λ(x− a)e−(

√
λ(x−a))2 1

λ
d(
√
λ(x− a)) =

a+

√
λ

π
· 1
λ

∫ ∞

−∞
ue−u2

du =⇒ ⟨x⟩ = a.

⟨x2⟩ =
∫ ∞

−∞
x2ρ(x)dx =

∫ ∞

−∞
x2

√
λ

π
e−λ(x−a)2dx.

Let u =
√
λ(x − a). Then, x = u√

λ
+ a, x2 = u2

λ + 2 a√
λ
u + a2, dx = du/

√
λ. Substituting, we

have

∫ ∞

−∞
x2

√
λ

π
e−λ(x−a)2dx =

√
λ

π
· 1√

λ

∫ ∞

−∞

(u2

λ
+ 2

a√
λ
u+ a2

)
e−u2

du =

1√
π

[ 1
λ

(∫ ∞

−∞
u2e−u2

du
)
+ 2

a√
λ

(∫ ∞

−∞
ue−u2

du
)
+ a2

(∫ ∞

−∞
e−u2

du
)]

=⇒

⟨x2⟩ = 1

2λ
+ a2.

We can now simply compute the standard deviation.

σ =
√
⟨x2⟩ − ⟨x⟩2 =

√
1

2λ
.

c.) We sketch a graph of ρ(x).
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Figure 1: Problem 1.3: Sketch of ρ(x).

Problem 1.4

We consider the wave function

Ψ(x, 0) =

{
Ax

a 0 ≤ x ≤ a

A b−x
b−a a ≤ x ≤ b

a.) First, we normalize the wave function.∫ ∞

−∞
|Ψ(x, 0)|2dx = 1 =

|A|2

a2

∫ a

0

x2dx+
|A|2

(b− a)2

∫ b

a

(b− x)2dx =

|A|2
(a
3
+

b− a

3

)
=

b

3
=⇒ A =

√
3

b
.

b.) Next, we sketch the wave function.

c.) The particle is most likely to be found at the place where |Ψ(x, 0)|2 is maximized, which in this
case is the same place where Ψ(x, 0) is maximum, x = a.

d.) The probability of finding the particle to the left of a is given by∫ a

−∞
|Ψ(x, 0)|2dx =

3

b

∫ a

0

x2

a2
dx =

a

b
.

We see that in the limit b = a, we get probability 1, and when b = 2a, we get probability 1/2, as
we expect.
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Figure 2: Problem 1.4: Sketch of Ψ(x, 0).

e.) Finally, we compute ⟨x⟩.

⟨x⟩ =
∫ ∞

−∞
Ψ∗(x, 0)xΨ(x, 0)dx =

3

a2b

∫ a

0

x2 · xdx+
3

b(b− a)2

∫ b

a

(b− x)2 · xdx =
3a2

4b
+

3

b(b− a)2

∫ b

a

(b− x)2 · xdx.

We solve the second integral by u-substitution. Let u = b − x, and replace x 7→ (x − b) + b =
−(b− x) + b. Then, we have

⟨x⟩ = 3a2

4b
+

3

b(b− a)2

[∫ 0

b−a

u3du− b

∫ 0

b−a

u2du

]
=

3a2

4b
+

3

b(b− a)2

(
− (b− a)4

4
+ b

(b− a)3

3

)
=

3a2

4b
+

3

b

(
b
b− a

3
− (b− a)2

4

)
=

1

4b
(3a2 + 4b2 − 4ab− 3b2 + 6ab− 3a2) =

2a+ b

4
.

Problem 1.5

We consider the wave function Ψ(x, t) = Ae−λ|x|e−iωt. a.) First, we normalize Ψ.

1 =

∫ ∞

−∞
|Ψ(x, t)|2dx = 2|A|2

∫ ∞

0

e−2λxdx =
|A|2

λ
=⇒

6



A =
√
λ.

b.) Next, we compute ⟨x⟩ and ⟨x2⟩.

⟨x⟩ =
∫ ∞

−∞
x|Ψ(x, t)|2dx =

∫ ∞

−∞
x
(
λe−2λ|x|

)
dx = 0

since the integrand is an odd function.

⟨x2⟩ =
∫ ∞

−∞
x2|Ψ(x, t)|2dx =

∫ ∞

−∞
x2

(
λe−2λ|x|

)
dx =

∫ ∞

0

x2
(
2λe−2λx

)
dx.

Let α ≡ 2λ. Then, the integral becomes

⟨x2⟩ =
∫ ∞

0

x2
(
αe−αx

)
dx = α

∫ ∞

0

∂2

∂α2
e−αxdx = α

∂2

∂α2

∫ ∞

0

e−αxdx =

α
∂2

∂α2

1

α
= α

2

α3
=

2

α2
=

1

2λ2
.

c.) We compute the standard deviation of this distribution.

σ =
√
⟨x2⟩ − ⟨x⟩2 =

√
⟨x2⟩ = 1√

2λ
.

Next, we sketch the probability distribution associated with this wave function.

The probability that the particle will be found more than one standard deviation from the mean is
given by

prob(x /∈ [⟨x⟩ − σ, ⟨x⟩+ σ]) = 1− prob(x ∈ [⟨x⟩ − σ, ⟨x⟩+ σ]) =

1−
∫ σ

−σ

|Ψ(x, t)|2 = 1− 2λ

∫ σ

0

e−2λxdx = 1−
∫ σ/2λ

0

e−udu =

e−σ/2λ = e−
√
2 ≈ 0.243.

Problem 1.6

We cannot integrate the equation
d⟨x⟩
dt

=

∫
x∂t|Ψ|2dx

by parts to move the time derivative onto x because we are differentiating with respect to time,
whereas we are integrating with respect to space.

The product rule for differentiation gives us that
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Figure 3: Problem 1.5: Sketch of |Ψ(x, t)|2.
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∂t(x|Ψ|2) = (∂tx)|Ψ|2 + x∂t|Ψ|2 = x∂t|Ψ|2.

We would recover the integration-by-parts identity by integrating both sides of this equation over
time, but given that the expectation value involves an integral over space, we are not justified in
using integration by parts.

Problem 1.7

We compute d⟨p⟩/dt.

d⟨p⟩
dt

=
d

dt

∫
Ψ∗

(
−iℏ∂x

)
Ψdx =⇒

i

ℏ
d⟨p⟩
dt

=

∫
∂t

(
Ψ∗Ψx

)
dx =

∫ (
Ψ̇∗Ψx +Ψ∗Ψ̇x

)
dx =

i

ℏ

∫ [
− ℏ2

2m
Ψ∗

xxΨx + VΨ∗Ψx −
(
− ℏ2

2m
Ψ∗Ψxxx + Vx|Ψ|2 + VΨ∗Ψx

)]
dx =

i

ℏ

∫ [
− ℏ2

2m

(
Ψ∗

xxΨx −Ψ∗Ψxxx

)
− Vx|Ψ|2

]
dx = − i

ℏ

∫
Vx|Ψ|2dx,

where the final equality can be demonstrated using integration by parts. (Assuming boundary
contributions vanish, each integration by parts moves a derivative from one term to the other, and
contributes a factor of −1.)

Thus, we conclude that

d⟨p⟩
dt

= −
〈
∂V

∂x

〉
= ⟨F ⟩.

This is known as Ehrenfest’s Theorem. The two equations

d⟨x⟩
dt

=
⟨p⟩
m

d⟨p⟩
dt

= ⟨F ⟩

tell us that expectation values in quantum mechanics obey classical equations of motion.

Problem 1.8

Suppose Ψ(x, t) obeys the Schrödinger equation, iℏΨ̇ = − ℏ2

2mΨxx + VΨ. Then Ψe−iV0t/ℏ obeys the
Schrödinger equation with a constant offset in the potential energy.

Proof:

iℏ∂t
(
Ψe−iV0t/ℏ

)
= iℏΨ̇e−iV0t/ℏ + iℏΨe−iV0t/ℏ(−iV0/ℏ) = iℏΨ̇e−iV0t/ℏ + V0Ψe−iV0t/ℏ =
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(
− ℏ2

2m
Ψxx + VΨ

)
e−iV0t/ℏ + V0Ψe−iV0t/ℏ = − ℏ2

2m
∂xx

(
Ψe−iV0t/ℏ

)
+ (V + V0)Ψe−iV0t/ℏ.

This additional phase factor does not affect any expectation values (excepting operators involving
time derivatives) as the complex conjugation will kill any overall phase of the wave function.

Problem 1.9

We consider the wave function Ψ(x, t) = Ae−amx2/ℏe−ait.

a.) We normalize this wave function.

1

|A|2
=

∫ ∞

−∞
e−2amx2/ℏdx =

√
πℏ
2am

=⇒ A =
(2am

πℏ

)1/4

.

b.) We determine which potential makes this wave function satisfy the Schrödinger equation.

iℏΨ̇ = iℏΨ(−ia) = aℏΨ.

− ℏ2

2m
Ψxx = − ℏ2

2m
Ψ(−2am/ℏ)(1− 2amx2/ℏ) = aℏΨ(1− 2ma2x2) =⇒

iℏΨ̇ +
ℏ2

2m
Ψxx = VΨ = 2ma2x2Ψ =⇒ V (x) = 2ma2x2.

This is a harmonic potential.

c.) Next, we compute ⟨x⟩, ⟨p⟩, ⟨x2⟩, and⟨p2⟩.

⟨x⟩ =
∫ ∞

−∞
xe−2amx2/ℏdx = 0

since x|Ψ|2 is an odd function.

⟨x2⟩ =
√

2am

πℏ

∫ ∞

−∞
x2e−2amx2/ℏdx =√

2am

πℏ

∫ ∞

−∞

(
− d

dk
e−kx2

)
dx

∣∣∣∣
k=2am/ℏ

= −
√

2am

πℏ
d

dk

∫ ∞

−∞
e−kx2

dx

∣∣∣∣
k=2am/ℏ

=

−
√

2am

πℏ
d

dk

√
π

k

∣∣∣∣
k=2am/ℏ

=

√
2am

πℏ

√
π

2
k−3/2

∣∣∣∣
k=2am/ℏ

=√
2am

πℏ

√
π

2

ℏ
2am

√
ℏ

2am
=

ℏ
4am

.

⟨p⟩ = m
d⟨x⟩
dt

= 0.
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And finally,

⟨p2⟩ =
∫ ∞

−∞
Ψ∗(−iℏ∂x)2Ψdx = −ℏ2

∫ ∞

−∞
Ψ∗Ψxxdx = ℏ2

∫ ∞

−∞
Ψ∗

xΨxdx.

Ψx = Ψ(−2amx/ℏ) =⇒ Ψ∗
x = Ψ∗(−2amx/ℏ) =⇒

⟨p2⟩ = ℏ2
∫ ∞

−∞
|Ψ|2x2

(2am
ℏ

)2

dx = 4a2m2⟨x2⟩ = 4a2m2 ℏ
4am

= amℏ.

d.) We verify that the uncertainty principle holds.

σxσp =
√
⟨x2⟩ − ⟨x⟩2

√
⟨p2⟩ − ⟨p⟩2 =

√
ℏ

4am

√
amℏ = ℏ/2.

The uncertainty principle does indeed hold. Furthermore, we see that this wave function actually
saturates the uncertainty principle.

Problem 1.10

We consider the first 25 digits of π:

3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3.

a.) We determine the various probabilities of each digit, if we were to sample this set at ran-
dom.

• N(0) = 0 → P (0) = 0.

• N(1) = 2 → P (1) = 2/25.

• N(2) = 3 → P (2) = 3/25.

• N(3) = 5 → P (3) = 1/5.

• N(4) = 3 → P (4) = 3/25.

• N(5) = 3 → P (5) = 3/25.

• N(6) = 3 → P (6) = 3/25.

• N(7) = 1 → P (7) = 1/25.

• N(8) = 2 → P (8) = 2/25.

• N(9) = 3 → P (9) = 3/25.

b.) The most probable digit is 3, which occurs with probability 1/5.

The median digit can be found by first sorting the list:

1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 8, 9, 9, 9.
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Counting symmetrically towards the middle, we find that the median value is 4.

The mean value is given by

⟨j⟩ =
∑
j

jP (j) = 1 · 2

25
+ 2 · 3

25
+ 3 · 5

25
+ 4 · 3

25
+ 5 · 3

25
+ 6 · 3

25
+ 7 · 1

25
+ 8 · 225 + 9 · 325 =

2 + 6 + 15 + 12 + 15 + 18 + 7 + 16 + 27

25
=

118

25
≈ 4.72.

c.) Next, we compute the standard deviation. First, this requires computing the second moment
of the distribution.

⟨j2⟩ =
∑
j

j2P (j) = 12 · 2

25
+ 22 · 3

25
+ 32 · 5

25
+ 42 · 3

25
+ 52 · 3

25
+ 62 · 3

25
+ 72 · 1

25
+ 82 · 225 + 92 · 325 =

2 + 12 + 45 + 48 + 75 + 108 + 49 + 128 + 243

25
=

710

25
≈ 28.4.

Thus, the standard deviation of this list is given by

σ =
√

⟨j2⟩ − ⟨j⟩2 =

√
710

25
−

(118
25

)2

=
3826

625
≈ 6.12.

Problem 1.11

a.) Classically, the total energy is formed from the kinetic energy and the potential energy,

E =
1

2
mv(x)2 + U(x).

We may therefore simply solve for v(x):

v(x) =

√
2

m

(
E − U(x)

)
.

b.) We consider the case of a harmonic oscillator centered on the origin, U(x) = 1
2kx

2.

In this case, a particle with energy E will oscillate between the turning points x0 = ±
√

2E
k . From

problem statement, we know that the probability distribution of positions is given by ρ(x) =
1/v(x)T, where T is the time it takes the particle to move from one turning point to the other. In
this case, T is just half the period of a simple harmonic oscillator:

T = π
√

m/k.

Thus, we have

ρ(x) =
1

π

√
k

m

√
m

2

1√
E − U(x)

=
1

π

√
k/2√

E − 1
2kx

2
=

1

π

1√
2E
k − x2

.
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Figure 4: Problem 1.11: Sketch of ρ(x).

We plot the behavior of this density in space in Figure 4.

We can further verify that this probability density is normalized.

∫ √
2E/k

−
√

2E/k

ρ(x)dx =

∫ √
2E/k

−
√

2E/k

1

π

√
k

2E

1√
1−

(√
k
2Ex

)2
dx =

1

π

∫ 1

−1

1√
1− α2

dα = 1.

c.) Next, we compute ⟨x⟩, ⟨x2⟩, and σx for this distribution.

⟨x⟩ = 0

since ρ(x) is an even function.

⟨x2⟩ =
∫ √

2E/k

−
√

2E/k

x2ρ(x)dx =

∫ √
2E/k

−
√

2E/k

1

π

√
k

2E

(√
k
2Ex

)2

√
1−

(√
k
2Ex

)2
dx =

2E

πk

∫ 1

−1

α2

√
1− α2

dα =
E

k
.

It follows that σx =
√
E/k.
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Problem 1.12

a.) We calculate the distribution of momenta for the classical simple harmonic oscillator.

We know that the probability distribution must obey ρ(p)dp = ρ(t)dt, and assuming we sample at
a random time, that gives us

ρ(p) = ρ(t)dt/dp =
dt/dp

T
=

1

FT
,

where F is the force and T is the half-period of the simple harmonic oscillator. Substituting the
known values of these quantities, we have

ρ(p) = − 1

π

1√
km

1

x
.

Energy conservation gives us

E =
p(x)2

2m
+

1

2
kx2 =⇒ x = ±

√
2

k

(
E − p2

2m

)
=⇒

ρ(p) =
1

π

1√
2mE

1√
1− p2

2mE

,with p ∈ [−
√
2mE,

√
2mE].

b.) We calculate the standard deviation of this distribution.

⟨p⟩ = 0,

since ρ(p) is an even function of p.

⟨p2⟩ =
∫ √

2mE

−
√
2mE

p2ρ(p)dp = 2mE

∫ √
2mE

−
√
2mE

1

π

1√
2mE

(
p√
2mE

)2

√
1− p2

2mE

dp =

2mE

π

∫ 1

−1

α2

√
1− α2

dα = mE.

Thus, the standard deviation of this distribution is given by

σp =
√
⟨p2⟩ − ⟨p⟩2 =

√
mE.

c.) Combining our results from this problem and the previous problem, we determine that the
classical uncertainty product for this system is given by

σxσp =

√
m

k
E =

E

ω
.

For the quantum simple harmonic oscillator, E ≥ ℏω/2, which means that σxσp ≥ ℏ/2, which is
just the Heisenberg uncertainty principle, as we expect.
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Figure 5: Problem 1.13: Sketch of ρ(x).

Problem 1.13

We generate random samples in time, and produce a histogram of the distribution of positions. We
plot the analytical result as well. See figure 5.

Problem 1.14

a.) We demonstrate the conservation of probability current in quantum mechanics.

The probability current is defined as

J(x, t) =
iℏ
2m

(∂Ψ∗

∂x
Ψ−Ψ∗ ∂Ψ

∂x

)
.

We consider the probability that a particle is found between a and b :

Pab =

∫ b

a

|Ψ|2dx.

Then, this quantity changes in time as

Ṗab =

∫ b

a

∂t|Ψ|2dx =

∫ b

a

(
Ψ̇∗Ψ+Ψ∗Ψ̇

)
dx =

15



∫ b

a

i

ℏ

[(
− ℏ2

2m
Ψ∗

xxΨ+ V |Ψ|2)− (− ℏ2

2m
Ψ∗Ψxx + V |Ψ|2)

]
dx =

iℏ
2m

∫ b

a

(
Ψ∗Ψxx −Ψ∗

xxΨ
)
dx =

iℏ
2m

(
Ψ∗Ψx −Ψ∗

xΨ
)∣∣∣∣b

a

=

−J(x, t)

∣∣∣∣b
a

= J(x, t)

∣∣∣∣a
b

= J(a, t)− J(b, t).

Thus, in quantum mechanics, the change in probability in some region of space equals the net flux
of probability current at the boundary.

We find the units of the probability current.

[ℏ] =
L2M

T
, [Ψ] =

1√
L
, [Ψx] =

1

L
√
L

=⇒ [J ] =
1

time
.

b.) We find the probability current for the wave function Ψ(x, t) = Ae−amx2/ℏe−iat.

Ψx = −2amx/ℏΨ =⇒
2m

iℏ
J = Ψ∗

xΨ−Ψ∗Ψx = −(2amx/ℏ)|Ψ|2 + (2amx/ℏ)|Ψ|2 = 0.

Problem 1.15

We show that the Schrödinger equation preserves the overlap between two wave functions in
time.

d

dt

∫ ∞

−∞
Ψ∗

1Ψ2dx =

∫ ∞

−∞
(Ψ̇∗

1Ψ2 +Ψ∗
1Ψ̇2)dx =∫ ∞

−∞

i

ℏ

[
− ℏ2

2m
Ψ∗

1,xxΨ2 + VΨ∗
1Ψ2 −

(
− ℏ2

2m
Ψ∗

1Ψ2,xx + VΨ∗
1Ψ2

)]
dx =

− iℏ
2m

∫ ∞

−∞

(
Ψ∗

1,xxΨ2 −Ψ∗
1Ψ2,xx

)
dx = 0.

The final equality can be obtained by integrating one of the terms by parts twice.

Problem 1.16

We consider the wave function Ψ(x, 0) = A(a2 − x2).

a.) First, we normalize the wave function.

1 =

∫ a

−a

|Ψ|2dx = 2A2

∫ a

0

(a2 − x2)2dx = 2A2

∫ a

0

(a4 − 2a2x2 + x4)dx =

16



2A2a5(1− 2/3 + 1/5) =
2A2a5

15
(15− 10 + 3) =

16A2a5

15
=⇒

A =

√
15

4a5/2
.

b.) Next, we compute ⟨x⟩. This is trivial, as |Ψ|2 is an even function, so

⟨x⟩ = 0.

c.) We now compute ⟨p⟩.

⟨p⟩ =
∫ a

−a

Ψ∗(−iℏΨx)dx. Ψx = −2Ax =⇒

⟨p⟩ = −iℏ
∫ a

−a

A(a2 − x2)(−2Ax)dx = 0

since the integrand is an odd function.

d.) Next, we compute ⟨x2⟩.

⟨x2⟩ =
∫ a

−a

|Ψ|2x2dx =

∫ a

−a

A2(a2 − x2)2x2dx =∫ a

−a

A2(a4 − 2a2x2 + x4)x2dx =

∫ a

−a

A2(a4x2 − 2a2x4 + x6)dx =

2A2a7(1/3− 2/5 + 1/7) =
16A2a7

105
=

16a7

105

15

16a5
=

a2

7
.

e.) We compute ⟨p2⟩.

⟨p2⟩ =
∫ a

−a

Ψ∗(−ℏ2)Ψxxdx = −ℏ2
∫ a

−a

A(a2 − x2)(−2A)dx = 4A2ℏ2
∫ a

0

(a2 − x2)dx =

4A2ℏ2
2a3

3
=

8A2a3ℏ2

3
=

8a3ℏ2

3

15

16a5
=

5ℏ2

2a2
.

f.) Combining our results, we have σx = a/
√
7.

g.) σp =

√
5

2

ℏ
a
.

h.) We verify the uncertainty principle for this wave function:

σxσp =
a√
7

√
5

2

ℏ
a
= ℏ

√
5

14
≈ 0.6ℏ >

ℏ
2

so we verify that the uncertainty principle is satisfied.
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Problem 1.17

We consider a simple model of an unstable particle which decays with some lifetime τ.

a.) Suppose P (t) =
∫∞
−∞ |Ψ|2dx. And suppose Ψ is a solution of the Schrödinger equation with

potential V = V0 − iΓ, where Γ ∈ R>0. Then,

dP (t)

dt
=

d

dt

∫ ∞

−∞
|Ψ|2dx =

∫ ∞

−∞

(
Ψ̇∗Ψ+Ψ∗Ψ̇

)
dx =

i

ℏ

∫ ∞

−∞

[(
− ℏ2

2m
Ψ∗

xxΨ+ (V0 − iΓ)|Ψ|2
)
−

(
− ℏ2

2m
Ψ∗Ψxx + (V0 + iΓ)|Ψ|2

)]
dx =

−2Γ

ℏ
P (t) +

i

ℏ

∫ ∞

−∞
− ℏ2

2m

(
Ψ∗

xxΨ−Ψ∗Ψxx

)
dx = −2Γ

ℏ
P (t) =⇒

dP (t)

dt
= −2Γ

ℏ
P (t).

b.) Solving this equation, we get

P (t) = e−2Γt/ℏ ≡ e−t/τ , where τ = ℏ/2Γ.

Thus, we conclude that a solution to the Schrödinger equation with a real potential and a constant
imaginary offset describes an unstable particle.

Problem 1.18

A particle must be treated quantum mechanically if its thermal de Broglie wavelength exceeds the
characteristic size of the system; that is, if

d < λ =
h√

3mkBT
⇐⇒ T <

h2

3mkBd2
.

a.) According to this criterion, unbound electrons in a solid with lattice spacing d = 0.3 nm must
be treated quantum mechanically for all temperatures

T < 1.29× 105K.

Applying the same criterion to the ion cores of the solid (for example, silicon atoms), we determine
that they become quantum mechanical for all temperatures

T < 2.5K.

Thus, unbound electrons in solids must be treated quantum mechanically, while the ion cores
typically do not have to be.

b.) We determine the temperatures for which particles in an ideal gas must be treated quantum
mechanically.
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According to the ideal gas law, PV = NkBT, the average interparticle separation is given by(V

N

)1/3

=
(kBT

P

)1/3

.

For the particles to be quantum mechanical, it is required that their thermal de Broglie wavelength
exceed this average interparticle separation

(kBT
P

)1/3

<
h√

3mkBT
=⇒ T 5/3 <

h2

3m

P 2/3

k5/3
=⇒

T <
1

kB

( h2

3m

)3/5

P 2/5.

For helium at atmospheric pressure, this temperature is about THe,1atm ≈ 2.93K. Whereas for

hydrogen in outer space at 3K, the de Broglie wavelength is about a nanometer. Thus, if the inter-
particle separation in a gas cloud (for example) is 1cm, the hydrogen will behave classically.
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