We find the closed form expression for the sum

$$
5_{-N, N} \sum_{n=-(n-1)}^{N-1} x^{n}
$$

It is trivial to show that $S_{N}=\sum_{n=0}^{N-1} x^{n}=\frac{1-x^{n}}{1-x}$.
We now find the formula for

$$
S_{-M}=\sum_{n=-(M-1)}^{0} x^{n}=1+x^{-1}+\cdots+x^{-(M-1)} .
$$

Consider $S_{-M}-X^{-1} S_{-M}=1+X^{-1}+\cdots+X^{-(M-1)}-$

$$
\begin{aligned}
& \left(x^{-1}+\cdots+x^{-(M-1)}-x^{-M}\right) \\
= & 1-x^{-M}=S_{-M}\left(1-x^{-1}\right) \Rightarrow \int_{-M}=\frac{1-x^{-M}}{1-x^{-1}} .
\end{aligned}
$$

We combine these tho expressions togeta formula for $S-M, N$:

$$
\begin{aligned}
& S_{-M, N}=\sum_{n=-(M-1)}^{N-1} x^{n}=S_{-M}+S_{N}-1= \\
& \frac{1}{\left(1-x^{-1}\right)(1-x)}\left[-\left(1-x^{-1}\right)(1-x)+\left(1-x^{-M}\right)(1-x)+\left(1-x^{N}\right)\left(1-x^{-1}\right)\right]=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\left(1-x^{-1}\right)(1-x)}\left[-\left(1-x^{-1}\right)(1-x)+\left(1-x^{-\mu}\right)(1-x) x^{-1} x+\left(1-x^{N}\right)\left(1-x^{-1}\right)\right]= \\
& \frac{1}{\left(1-x^{-1}\right)(1-x)}\left[-\left(1-x^{-1}\right)(1-x)+\left(1-x^{-\mu}\right)\left(x^{-1}-1\right) x+\left(1-x^{N}\right)\left(1-x^{-1}\right)\right]= \\
& \frac{1}{\left(1-x^{-1}\right)(1-x)}\left[-\left(1-x^{-1}\right)(1-x)-\left(1-x^{-\mu}\right)\left(1-x^{-1}\right) x+\left(1-x^{N}\right)\left(1-x^{-1}\right)\right]= \\
& =\frac{1}{1-x}\left(x-1-x+x^{-(N-1)}+1-x^{N}\right)=\frac{x^{-(M-1)}-x^{N}}{1-x}
\end{aligned}
$$

We further remark the this formula holds if the staling index is positive but nonzero:

$$
\begin{aligned}
& \sum_{n=p}^{q-1} x^{n}=x^{p}+x^{p+1}+\cdots+x^{q-1} \\
= & S_{q}-S_{p+1}=\frac{1}{1-x}\left(1-x^{q}-\left(1-x^{p+1}\right)\right)=\frac{x^{p+1}-x^{q}}{1-x} .
\end{aligned}
$$

