We show that the series

$$
\sum_{n=1}^{\infty} 1 / n
$$

diverges.
Proof:
We observe that this sum can be understood as a Riemann sum of the function $f(x)=1 / x$, where each rectangle has a base of length 1 :

That is, the fotal area of all the vectamles equals the value of our series. We further remark that thisis a left Riemann sui so the height of each rectangle is determined by the value of $f(x)$ attle left edge of each rectangle. Thus, it is clear that $\forall x \in[1, \infty), f(x) \leq \operatorname{rectangle}(x)$.

If follows from this observation that

$$
\int_{1}^{\infty} \frac{1}{x} d x \leqslant \sum_{n=1}^{\infty} \frac{1}{n}
$$

(In fact, ibis clem from the phot Hhd this is a strict inequality.) Howeere, we can evaluate this integral:

$$
\int_{1}^{\infty} \frac{d x}{x}=\left.\log x\right|_{1} ^{\infty}=\log \infty-\log 1=\infty
$$

Thus, behave $\infty \leq \sum_{n=1}^{\infty} 1 / n$, which implies that $\sum_{n=1}^{\infty} 1 / n$ diverges.

