Exercise/ We determine tow states and operators (i.e. vectors and natices) betave under a charg of basis. In quantom medavics, chaye of basis opemtors are vuilany.
(Sarce: Sakurai QM, Section 1.5)
Suppese we have tho orthonornal, complote sets of basiskets $\{|a\rangle\},\{|b\rangle\}:$

$$
\begin{aligned}
& \left\langle a^{(i)} \mid a^{(j)}\right\rangle=\delta_{i j}=\left\langle b^{(i)} \mid b^{(j)}\right\rangle \\
& \underline{1}=\sum_{i}\left|a^{(i)}\right\rangle\left\langle a^{(i)}\right|=\sum_{i}\left|b^{(i)}\right\rangle\left\langle b^{(i)}\right|
\end{aligned}
$$

We conslrucl a transformation operator which maps $\{|a\rangle\} \mid-\{\{b\rangle\rangle$.
Let $u=\sum_{k}\left|b^{(k)}\right\rangle\left\langle a^{(k)}\right|$.
Then, for all bansis kets, retave

$$
u\left|a^{(i)}\right\rangle=\sum_{k}\left|b^{(k)}\right\rangle\left\langle a^{(k)} \mid a^{(i)}\right\rangle=\left|b^{(i)}\right\rangle
$$

Funtemore, $U_{\text {is untary: }}$

$$
\begin{aligned}
& u u^{+}=u\left(\sum_{k}\left|b^{(k)}\right\rangle\left\langle a^{(k)}\right|\right)^{\dagger}= \\
& \sum_{k} u\left|a^{(k)}\right\rangle\left\langle b^{(k)}\right|=\sum_{k}\left|b^{(k)}\right\rangle\left\langle b^{(k)}\right|=1 \\
& u^{+} u=\sum_{k, l}\left(\left|b^{(k)}\right\rangle\left\langle a^{(k)}\right|\right)^{+}\left(\left|b^{(l)}\right\rangle\left\langle a^{(l)}\right|\right)= \\
& \sum_{k_{,} l}\left|a^{(k)}\right\rangle\left\langle b^{(k)} \mid b^{(l)}\right\rangle\left\langle a^{(l)}\right|=\sum_{k}\left|a^{(k)}\right\rangle\left\langle a^{(k)}\right|=\mathbb{1} .
\end{aligned}
$$

Therefore, wehave constuoted a valid claye of basis operestor. In th $\{|a\rangle\}$ basis, the unilary vatrix is sepersented as

$$
u_{i j}=\left\langle a^{(i)}\right| u\left|a^{(j)}\right\rangle=\left\langle a^{(i)} \mid b^{(j)}\right\rangle,
$$

so its untries are forned from the overtap betveen theolland newbasis vectors.

We now dototemine how ar change of basis openster acts on arbifinury stales:

$$
\left.|\alpha\rangle=\sum_{i}\left|a^{(i)} X a^{(i)}\right| \alpha\right\rangle
$$

The comporents offhis sthe inth rew hasis are given by

$$
\begin{gathered}
\left\langle b^{(i)} \mid \alpha\right\rangle=\sum_{j}\left\langle b^{(i)}\right| a^{(j)} X a^{(j)}|\alpha\rangle \\
=u_{i j}^{+}\left\langle a^{(j)} \mid \alpha\right\rangle \Longleftrightarrow \\
\quad|\alpha\rangle^{\prime}=u^{+}|\alpha\rangle
\end{gathered}
$$

Similady, we can experss opeadoros intle rew basis as

$$
\begin{gathered}
\left\langle b^{(i)}\right| X\left|b^{(j)}\right\rangle=\sum_{k, l}\left\langle b^{(i)}\right| a^{(k)} X a^{(k)}|X| a^{(a)} X a^{(0)}\left(b^{(j)}\right\rangle \\
=\sum_{k, L} u_{i k}^{+} X_{k l} u_{r j}=X_{i j}^{\prime} \Leftrightarrow \\
X^{\prime}=U^{+} X U .
\end{gathered}
$$

$$
\begin{aligned}
& u=\sum_{k}\left|b^{(6)}\right\rangle\left\langle a^{(4)}\right| . \quad u_{i j}=\left\langle a^{(i)} \mid b^{(j)}\right\rangle,\left\langle b^{(i)} \mid \alpha\right\rangle=u_{i j}^{+}\left\langle a^{\left({ }^{j} \mid\right.} \mid \alpha\right\rangle \\
& \leftrightarrow|\alpha\rangle^{\prime}=u^{+}|\alpha\rangle .\left\langle b^{(4)}\right| x\left|b^{(j)}\right\rangle=u_{i k}^{+} x_{k L_{i j}} u_{i j} \leftrightarrow x^{\prime}=u^{+} x u .
\end{aligned}
$$

