Exerise We compute the band states of the linite square well in oe divension.
(Saunce: Griffiths QM, Section 2.6)
The finite sprave vellis given bytle patential

$$
V(x)=\left\{\begin{array}{cc}
-V_{0}, & |x|<0 \\
0, & |x|>a
\end{array}\right.
$$

Wher $V_{0}>0$ and ≤ 0 (as ne ave interssted in bound states.
We solve the ID Schrodigen equalion in eachregion.
Casel: $x<-a$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}=E \psi \Rightarrow \psi^{\prime \prime}=-\frac{2 m E}{\hbar^{2}} \psi \equiv \kappa^{2} \psi \\
& \Longrightarrow \psi=A e^{\psi x}+B e^{-\psi x}
\end{aligned}
$$

We only ane aboul nomalizable sollicus, so veave tefl with

$$
\psi=A e^{k x}
$$

lase 2: x ya
By the stave angurents as abore, and the symunelry oftk ptatial abad $x=0$, ve lave

$$
\psi=A e^{-\mu x}
$$

Case 3: $|x|<a$.

$$
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}-V_{0} \psi=E \psi \Rightarrow \psi^{\prime \prime}=-\frac{2 m\left(E+V_{0}\right)}{\hbar^{2}} \psi
$$

In order for Ψ tobe nomalizable, verepuive $-V_{0}\left\langle E\right.$, butabo l_{0} get band states, nerequive $E<0 \Rightarrow-V_{0}<E<0 \Rightarrow 0<E H H_{0} \Rightarrow$

$$
\psi^{\prime \prime}=-l^{2} \psi \Longrightarrow \psi=B \cos l x+C \sin l x \text {. Asve }
$$

hrow the sollions will be symmedric under $X \mapsto-X$, vehave

$$
\psi=B \cos l x .
$$

We now malch boundary conditions. Since the potential is noutrevisimimes, we how the navefoction and its derivatives will be continas everywder. Thus, our bounday condilioms giveus

$$
\begin{aligned}
& A e^{-K a}=B \operatorname{cosla},-K A e^{-K a}=-l B \sin l a \Rightarrow \\
& K=l \text { tan la } \Rightarrow K a=l a t a n l a .
\end{aligned}
$$

Now, lot $Z=l a, z_{0}=\frac{d}{h} \sqrt{2 m V_{0}}$. Then,

$$
\begin{aligned}
& a^{2}\left(K^{2}+l^{2}\right)=\frac{-2 m E_{a}^{2}}{\hbar^{2}}+\frac{2 m\left(\xi+V_{0}\right) a^{2}}{\hbar^{2}}=z_{0}^{2} \Rightarrow \\
& K_{a}=\sqrt{z_{0}^{2}-z^{2}} \Rightarrow \tan z=\sqrt{z^{2} / z^{2}-1}
\end{aligned}
$$

The baud sidecerenjies of this system will satisfy this hrussementenalepplian.
\square

Clearly, as re increase z_{0}, the band states approach the vertical asymptotes of the tangent function: $z=n \pi / 2$ (nad) \rightarrow

$$
\frac{n \pi}{2}=\sqrt[a]{\frac{2 m\left(i+r_{0}\right)}{\hbar^{2}}} \Rightarrow E_{n}=\frac{\hbar^{2} \pi^{2} n^{2}}{8 m a^{2}}-V_{0}, n \in o d d s
$$

for wide and deep wells. This is a shifted erosion of Akinfinite spur well spat rome for - box of size $2 a$.

At the other extureve, no natter bow shall we wake Z_{0}, it will still intersect the tangent al ouepoint, since
$\tan z \approx z$, and $\sqrt{(z / z)^{2}-1}$ has inerical asymplodeal $z=0$ and vanishes af $z=z_{0}$.

Both waves being continues implies that they must interred coverture between $z=0$ aud $z=z_{0}$, regardless haw small Z gaels. (Hor, Ian assuming $z<\pi / 2$.)

This implies that the finite square well will always lave abed state in one dimension, even if itis very thin or very shallow.
\qquad
\qquad \longrightarrow
\qquad \longrightarrow \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad \longrightarrow \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad

